Tokens, Expressions and Control Structures - 47

float average = sum/i; // initialize dynamically at run time

Dynamic initialization is extensively used in object-oriented programming. We can create
exactly the type of object needed, using information that is known only at the run time.

|3.12 Reference Variables

C++ introduces a new kind of variable known as the reference variable. A reference variable
provides an alias (alternative name) for a previously defined variable. For example, if we
make the variable sum a reference to the variable total, then sum and total can be used
interchangeably to represent that variable. A reference variable is created as follows:

data-type & reference-name = variable-name

Example:
float total = 100;
float & sum = total;

total is a float type variable that has already been declared; sum is the alternative name
declared to represent the variable total. Both the variables refer to the same data object in
the memory. Now, the statements

cout << total;
and
‘_cout << sum;
both print the value 100. The statement
total = total + 10;
will change the value of both total and sum to 110. Likewise, the assignment
sum = 0;

will change the value of both the variables to zero.

A reference variable must be initialized at the time of declaration. This establishes the
correspondence between the reference and the data object which it names. It is important to
note that the initialization of a reference variable is completely different from assignment to
it.

48 o Object-Oriented Programming with C++

C++ assigns additional meaning to the symbol &. Here, & is not an address operator. The
notation float & means reference to float. Other examples are:

int n[10];
int & x = n[10]; // x is alias for n[10]
char & a = '\n'; // initialize reference to a literal

The variable x is an alternative to the array element n[10]. The variable a is initialized to
the newline constant. This creates a reference to the otherwise unknown location where the

newline constant \n is stored.

The following references are also allowed:

i. int x3
int *p = &x;
int & m = *p;

ii. int & n = 50;

The first set of declarations causes m to refer to x which is pointed to by the pointer p and
the statement in (ii) creates an int object with value 50 and name n.

A major application of reference variables is in passing arguments to functions. Consider
the following:

—wvoid f(int & x) // uses reference
{
= x+10; // x 15 incremented; so alsem
}
int main()
{
intm=10;
—— f(m); // function call

.....

When the function call f(m) is executed, the following initialization occurs:
int & x = m;
Thus x becomes an alias of m after executing the statement

f(m);

Tokens, Expressions and Control Structures —® 49

Such function calls are known as call by reference. This implementation is illustrated in
Fig. 3.2. Since the variables x and m are aliases, when the function increments X, m is also
incremented. The value of m becomes 20 after the function is executed. In traditional C, we
accomplish this operation using pointers and dereferencing techniques.

int m=10; e R 111
- - 10 - one location
- two names
call
f(m) - > X
int&x= m

Fig. 3.2 « Call by reference mechanism

The call by reference mechanism is useful in object-oriented programming because it permits
the manipulation of objects by reference, and eliminates the copying of object parameters
back and forth. It is also important to note that references can be created not only for built-
in data types but also for user-defined data types such as structures and classes. References
work wonderfully well with these user-defined data types.

|3.13 Operators in C+ +

C++has arich set of operators. All C operators are valid in C++ also. In addition, C++ introduces
some new operators. We have already seen two such operators, namely, the insertion operator
<<, and the extraction operator >>. Other new operators are:

Scope resolution operator
Tr¥ Pointer-to-member declarator
->* Pointer-to-member operator
L Pointer-to-member operator
delete Memory release operator

endl Line feed operator
new Memory allocation operator
setw Field width operator

In addition, C++ also allows us to provide new definitions to some of the built-in operators.
Thatis, we can give several meanings to an operator, depending upon the types of arguments
used. This process is known as operator overloading.

50 & Object-Oriented Programming with C++

13.14 Scope Resolution Operator

Like C. C++ is also a block-structured language. Blocks and scopes can be used in constructing
programs. We know that the same variable name can be used to have different meanings in
different blocks. The scope of the variable extends from the point of its declaration till the end
of the block containing the declaration. A variable declared inside a block is said to be local to
that block. Consider the following segment of a program:

.....

.....

-
=
(a4
ped

n
—
-

.....

}

The two declarations of x refer to two different memory locations containing different
values. Statements in the second block cannot refer to the variable x declared in the first
block, and vice versa. Blocks in C++ are often nested. For example, the following style is
common:

int x = 10;
{ =
int x =1;
Block 2 Block 1
] -
} *

Block? is contained in block 1. Note that a declaration in an inner block hides a declaration
of the same variable in an outer block and, therefore, each declaration of x causes it to refer to

